Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Antiviral Res ; : 105620, 2023 May 09.
Article in English | MEDLINE | ID: covidwho-2316986

ABSTRACT

Diseases caused by new viruses cost thousands if not millions of human lives and trillions of dollars. We have identified, collected, curated, and integrated all chemogenomics data from ChEMBL for 13 emerging viruses that hold the greatest potential threat to global human health. By identifying and solving several challenges related to data annotation accuracy, we developed a highly curated and thoroughly annotated database of compounds tested in both phenotypic and target-based assays for these viruses that we dubbed SMACC (Small Molecule Antiviral Compound Collection). The pilot version of the SMACC database contains over 32,500 entries for 13 viruses. By analyzing data in SMACC, we have identified ∼50 compounds with polyviral inhibition profile, mostly covering flavi- and coronaviruses. The SMACC database may serve as a reference for virologists and medicinal chemists working on the development of novel BSA agents in preparation for future viral outbreaks. SMACC is publicly available at https://smacc.mml.unc.edu.

2.
ACS Pharmacol Transl Sci ; 5(7): 468-478, 2022 Jul 08.
Article in English | MEDLINE | ID: covidwho-1908096

ABSTRACT

The COVID-19 pandemic has had enormous health, economic, and social consequences. Vaccines have been successful in reducing rates of infection and hospitalization, but there is still a need for acute treatment of the disease. We investigate whether compounds that bind the human angiotensin-converting enzyme 2 (ACE2) protein can decrease SARS-CoV-2 replication without impacting ACE2's natural enzymatic function. Initial screening of a diversity library resulted in hit compounds active in an ACE2-binding assay, which showed little inhibition of ACE2 enzymatic activity (116 actives, success rate ∼4%), suggesting they were allosteric binders. Subsequent application of in silico techniques boosted success rates to ∼14% and resulted in 73 novel confirmed ACE2 binders with K d values as low as 6 nM. A subsequent SARS-CoV-2 assay revealed that five of these compounds inhibit the viral life cycle in human cells. Further effort is required to completely elucidate the antiviral mechanism of these ACE2-binders, but they present a valuable starting point for both the development of acute treatments for COVID-19 and research into the host-directed therapy.

3.
[Unspecified Source]; 2020.
Non-conventional in English | [Unspecified Source] | ID: grc-750466

ABSTRACT

COVID-19 is undoubtedly the most impactful viral disease of the current century, afflicting millions worldwide. As yet, there is not an approved vaccine, as well as limited options from existing drugs for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro . Overall, we identified 16 synergistic and 8 antagonistic combinations, 4 of which were both synergistic and antagonistic in a dose-dependent manner. Among the 16 synergistic cases, combinations of nitazoxanide with three other compounds (remdesivir, amodiaquine and umifenovir) were the most notable, all exhibiting significant synergy against SARS-CoV-2. The combination of nitazoxanide, an FDA-approved drug, and remdesivir, FDA emergency use authorization for the treatment of COVID-19, demonstrate a strong synergistic interaction. Notably, the combination of remdesivir and hydroxychloroquine demonstrated strong antagonism. Overall, our results emphasize the importance of both drug repurposing and preclinical testing of drug combinations for potential therapeutic use against SARS-CoV-2 infections.

4.
ACS Pharmacol Transl Sci ; 4(5): 1675-1688, 2021 Oct 08.
Article in English | MEDLINE | ID: covidwho-1450269

ABSTRACT

The National Center for Advancing Translational Sciences (NCATS) has been actively generating SARS-CoV-2 high-throughput screening data and disseminates it through the OpenData Portal (https://opendata.ncats.nih.gov/covid19/). Here, we provide a hybrid approach that utilizes NCATS screening data from the SARS-CoV-2 cytopathic effect reduction assay to build predictive models, using both machine learning and pharmacophore-based modeling. Optimized models were used to perform two iterative rounds of virtual screening to predict small molecules active against SARS-CoV-2. Experimental testing with live virus provided 100 (∼16% of predicted hits) active compounds (efficacy > 30%, IC50 ≤ 15 µM). Systematic clustering analysis of active compounds revealed three promising chemotypes which have not been previously identified as inhibitors of SARS-CoV-2 infection. Further investigation resulted in the identification of allosteric binders to host receptor angiotensin-converting enzyme 2; these compounds were then shown to inhibit the entry of pseudoparticles bearing spike protein of wild-type SARS-CoV-2, as well as South African B.1.351 and UK B.1.1.7 variants.

5.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1412708

ABSTRACT

Effective treatments for COVID-19 are urgently needed. However, discovering single-agent therapies with activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been challenging. Combination therapies play an important role in antiviral therapies, due to their improved efficacy and reduced toxicity. Recent approaches have applied deep learning to identify synergistic drug combinations for diseases with vast preexisting datasets, but these are not applicable to new diseases with limited combination data, such as COVID-19. Given that drug synergy often occurs through inhibition of discrete biological targets, here we propose a neural network architecture that jointly learns drug-target interaction and drug-drug synergy. The model consists of two parts: a drug-target interaction module and a target-disease association module. This design enables the model to utilize drug-target interaction data and single-agent antiviral activity data, in addition to available drug-drug combination datasets, which may be small in nature. By incorporating additional biological information, our model performs significantly better in synergy prediction accuracy than previous methods with limited drug combination training data. We empirically validated our model predictions and discovered two drug combinations, remdesivir and reserpine as well as remdesivir and IQ-1S, which display strong antiviral SARS-CoV-2 synergy in vitro. Our approach, which was applied here to address the urgent threat of COVID-19, can be readily extended to other diseases for which a dearth of chemical-chemical combination data exists.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Deep Learning , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Cell Survival/drug effects , Drug Combinations , Drug Interactions , Drug Synergism , Humans , SARS-CoV-2
6.
Chem Soc Rev ; 50(16): 9121-9151, 2021 Aug 21.
Article in English | MEDLINE | ID: covidwho-1294509

ABSTRACT

COVID-19 has resulted in huge numbers of infections and deaths worldwide and brought the most severe disruptions to societies and economies since the Great Depression. Massive experimental and computational research effort to understand and characterize the disease and rapidly develop diagnostics, vaccines, and drugs has emerged in response to this devastating pandemic and more than 130 000 COVID-19-related research papers have been published in peer-reviewed journals or deposited in preprint servers. Much of the research effort has focused on the discovery of novel drug candidates or repurposing of existing drugs against COVID-19, and many such projects have been either exclusively computational or computer-aided experimental studies. Herein, we provide an expert overview of the key computational methods and their applications for the discovery of COVID-19 small-molecule therapeutics that have been reported in the research literature. We further outline that, after the first year the COVID-19 pandemic, it appears that drug repurposing has not produced rapid and global solutions. However, several known drugs have been used in the clinic to cure COVID-19 patients, and a few repurposed drugs continue to be considered in clinical trials, along with several novel clinical candidates. We posit that truly impactful computational tools must deliver actionable, experimentally testable hypotheses enabling the discovery of novel drugs and drug combinations, and that open science and rapid sharing of research results are critical to accelerate the development of novel, much needed therapeutics for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Computer Simulation , Drug Design , Drug Discovery/methods , Drug Repositioning , Antiviral Agents/therapeutic use , COVID-19/virology , Clinical Trials as Topic , Humans , Pandemics , SARS-CoV-2/drug effects
7.
ACS Pharmacol Transl Sci ; 4(3): 1124-1135, 2021 Jun 11.
Article in English | MEDLINE | ID: covidwho-1233687

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has prompted researchers to pivot their efforts to finding antiviral compounds and vaccines. In this study, we focused on the human host cell transmembrane protease serine 2 (TMPRSS2), which plays an important role in the viral life cycle by cleaving the spike protein to initiate membrane fusion. TMPRSS2 is an attractive target and has received attention for the development of drugs against SARS and Middle East respiratory syndrome. Starting with comparative structural modeling and a binding model analysis, we developed an efficient pharmacophore-based approach and applied a large-scale in silico database screening for small-molecule inhibitors against TMPRSS2. The hits were evaluated in the TMPRSS2 biochemical assay and the SARS-CoV-2 pseudotyped particle entry assay. A number of novel inhibitors were identified, providing starting points for the further development of drug candidates for the treatment of coronavirus disease 2019.

8.
Mol Ther ; 29(2): 873-885, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1065674

ABSTRACT

Antiviral drug development for coronavirus disease 2019 (COVID-19) is occurring at an unprecedented pace, yet there are still limited therapeutic options for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2, thus generating better antiviral efficacy. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro. Sixteen synergistic and eight antagonistic combinations were identified; among 16 synergistic cases, combinations of the US Food and Drug Administration (FDA)-approved drug nitazoxanide with remdesivir, amodiaquine, or umifenovir were most notable, all exhibiting significant synergy against SARS-CoV-2 in a cell model. However, the combination of remdesivir and lysosomotropic drugs, such as hydroxychloroquine, demonstrated strong antagonism. Overall, these results highlight the utility of drug repurposing and preclinical testing of drug combinations for discovering potential therapies to treat COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/therapeutic use , Alanine/analogs & derivatives , Alanine/therapeutic use , Drug Combinations , Drug Synergism , Humans , Hydroxychloroquine/therapeutic use
9.
bioRxiv ; 2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-636676

ABSTRACT

COVID-19 is undoubtedly the most impactful viral disease of the current century, afflicting millions worldwide. As yet, there is not an approved vaccine, as well as limited options from existing drugs for treating this disease. We hypothesized that combining drugs with independent mechanisms of action could result in synergy against SARS-CoV-2. Using in silico approaches, we prioritized 73 combinations of 32 drugs with potential activity against SARS-CoV-2 and then tested them in vitro . Overall, we identified 16 synergistic and 8 antagonistic combinations, 4 of which were both synergistic and antagonistic in a dose-dependent manner. Among the 16 synergistic cases, combinations of nitazoxanide with three other compounds (remdesivir, amodiaquine and umifenovir) were the most notable, all exhibiting significant synergy against SARS-CoV-2. The combination of nitazoxanide, an FDA-approved drug, and remdesivir, FDA emergency use authorization for the treatment of COVID-19, demonstrate a strong synergistic interaction. Notably, the combination of remdesivir and hydroxychloroquine demonstrated strong antagonism. Overall, our results emphasize the importance of both drug repurposing and preclinical testing of drug combinations for potential therapeutic use against SARS-CoV-2 infections.

SELECTION OF CITATIONS
SEARCH DETAIL